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Supplementary Methods and Discussion 

Compositional Data Analysis 

Ignoring the compositional effects of ion sampling can lead to nonsensical comparisons as discussed in 

the main text.  However, more subtle errors also exist.  In the Figure 1C example, when estimating the 

ratio between channels 126 and 128, averaging the intensities prior to estimating the ratio, while not 

advised, will still provide reasonable results.  The ratio after averaging would be 
���

�����
= �

�
,	which is on 

target regardless of how greatly 	 and 
 diverge.  Accordingly, the most important aspect of an analysis is 

correctly defining the relative quantities of interest.  However, this sort of analysis is still suboptimal as 

lower intensities will contribute less to the average, even if the ratios are of identical quality.   

Similarly, it should be noted that log linear models when used to estimate contrasts between conditions, 

will also agree with a basic log-ratio compositional analysis.  This is because the models often have the 

same expected values, e.g. �(log� 
�) −	 �(log� 
�) = �(log�
��
��
).  However, this equivalence 

disappears when considering error estimation or models that include covariates, such as the MS2 model 

in this paper or a longitudinal model that seeks to estimate a time effect.  Importantly, the improvement to 

accuracy seen with our MS2 model could not have been achieved by simply adding SSN as a covariate in 

regular log linear model.  This is because the parameters of interest are contrasts and peptide parameters 

create a blocking structure.  Consequently, the contrast is taken within each peptide block, and since each 

peptide has the same SSN across conditions, the effect on the contrast estimate will be non-existent.     

The best way to avoid the mistakes discussed above is to use tools from compositional data 

analysis.  The relevant theory is based on the concept of transforming from a constrained 

geometric space to unconstrained real space, performing a usual analysis, and transforming back 

as needed.  Appropriate transformations include the additive log-ratio (ALR)1 and the isometric 
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log-ratio transformation (ILR)2.  The ILR has the advantage of being isometric but at the cost of 

interpretability (transforming back to the proportions becomes essential).  The ALR, while not 

isometric, provides valid inferences when using likelihood-based methods1 and enables direct 

estimation of log-ratios between conditions, which are often of interest in a proteomics 

experiment. 

From the simplex, we transform our data into real space with the ALR.  Then we fit a linear 

model to the log-ratios of all peptides from a single protein and included a regression on isolation 

specificity (IS), where IS is defined as the proportion of signal in the MS1 isolation window 

belonging to the targeted mass (or its isotopes).  At this point each outcome is defined as a log-

ratio to an arbitrary reference channel. Notice that the ALR transformation reduces the 

dimension of the problem to two.  This is because a composition with three parts only had two 

degrees of freedom (because of the constraint, knowing two parts tells us everything about the 

composition).  With results obtained from two regressions in real space, the inverse of the ALR 

can then be used (if necessary) to create a single regression line in the simplex.  Doing so here is 

informative.   

Points in the ternary diagram seem to be pulled towards the center of the triangle and fitting a 

regression line on IS appears to explain much of the trend towards unity (grey dashed line).  This 

suggests that predicting where the protein would have been if IS equaled one might mitigate 

some of the compression problems in isobaric tag proteomics data3.  In Figure 3, the projected 

estimate is about half-way between the true value and the average intensity.  It should be noted 

that adding isolation specificity to standard linear models for proteomics4 would not achieve the 

same effect as estimating a slope that directly affects the log-ratios.   
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In a full dataset, making use of peptide-level covariates becomes substantially more difficult 

because of the unbalanced structure of the data. While certain proteins will have many peptides, 

others will have very few observations, making the estimation of reliable regression lines 

extremely difficult.  Furthermore, as shown in Figure 2a, the relationship between our 

compression surrogate and the peptide ratios is not only a function of IS (or summed signal-to-

noise), it also depends on the true protein fold-change.  Proteins that do not change have zero 

compression, while proteins with large changes can be dramatically pulled towards unity.   

Sharing information with Bayesian modelling 

In proteomics it is common to analyze data for each protein independently.  However, this can be 

problematic for proteins that only had a few peptide observations.  In these cases regression lines 

will be fairly unreliable and using them to project relative protein abundance, for example when 

IS equals one, proves to often be detrimental.  However, Figure 2D and E suggest that there may 

be a consistent relationship between our peptide level covariates and ratio compression that can 

be modelled across the whole dataset.  We can see that the slope of the relationship should 

always be positive, it should be zero when the true change is zero, and should increase 

proportionally to the magnitude of the true change.  These assumptions motivate the use of a 

single data-wide parameter that defines the relationship between a peptide level covariate and 

ratio compression.  We incorporate this information into a non-linear Bayesian model for MS2 

data defined below.  

The unbalanced structure of the data also exacerbates the importance of error estimation.  For 

proteins with only a single observed peptide, standard errors cannot be computed.  With a small 
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number of peptides, standard errors can be computed but are not robust to outliers.  Both of these 

problems can be addressed by sharing information across proteins.   

One solution to the error estimation problem would be to use a pooled variance estimate.  In this 

case we would estimate one variance component that represented experimental error for every 

protein.  This would immediately solve the problem of unreliable error estimates that will occur 

when no pooling is used.  However, such an approach simply trades one problem for another.  

While error estimates for proteins with little information may benefit from a pooled variance 

component, this approach would overestimate the error for proteins with lots of data and little 

variation.   

For this reason we make use of partially pooled variance components5 so that proteins with few 

peptides rely almost entirely on the average experimental error, but as more peptides are 

observed, the variation converges to the within protein variance.  This can be accomplished by 

creating a hierarchical model for the variance components. 

The hierarchical model for variance components provides substantially improved variance 

estimation which was responsible for the improved signal detection shown throughout the paper.  

Beyond signal detection, an improved assessment of variability can protect against some well-

known sources of danger in proteomics data.  Post translational modifications and protein 

isoforms can result in peptides that are assigned to the same protein in the database, but which 

have very different ratios.  There is nothing in our modeling that accounts for this situation.  

However, since we are improving the estimation of variance it may be possible to detect these 

scenarios by looking for proteins with many peptides but unusually high variance.  
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The Bayesian compositional models 

The compositional MS2 model that utilizes partially pooled variance estimation and a single compression 

parameter is defined as follows. 


���	|	���, �, ���
� 	~	������1 + !!�����", ���

�" 

���	~	�(0, 10) 

� ∼ %&'()*+(0,∞) 

���
� 	|-	 ∼ 	.&/0*1023++3(1, -) 

- ∼ 435(�)*+35(0, 5) 

Where ' = 1,… , &8 indexes the &8 unique proteins.  9 = 1,…	 , &: − 1	indexes the number of relative 

comparisons made, so that &: is the number of conditions prior transforming into log ratios.  ; =

1, … ,+� indexes the +� peptides observed within protein '.   


��� is the additive log2 ratio of the ;th peptide observed within protein ' in condition 9.  ��� represents 

the average log ratio when summed-signal-to-noise equals zero.  The prior was selected with a mean of 

zero to reflect the experimental assumption that most proteins will not be changed across conditions.  The 

standard deviation of 10 was selected to be a sufficiently large distribution (these are on the log2 scale!) to 

refrain from effecting our estimation while still being informative enough to avoid sampling problems 

caused by sampling from unrealistic parameter values.  This is often referred to as a weakly informative 

prior.      
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!!���� is the peptide level covariate describing the observed summed signal-to-noise across all channels.  

The analysis in our paper contains predictions of the outcome when !!� is at the 99th percentile of 

observed summed signal-to-noise values.  In theory, we would be interested in the value at the maximum, 

but these datasets often contain extreme outliers in summed signal-to-noise values which motivated a 

projection to the 99th percentile.  � is a parameter used across the whole dataset to define the relationship 

between summed signal-to-noise and true fold change.  Estimating a single � parameter allows us to 

model compression even for proteins that have a small number of observed peptides.  The uniform prior 

was selected since we did not know a priori what a reasonable range for this parameter might be, and after 

fitting the model the non-informative approach did not cause any problems with convergence.   

Regarding the SSN adjustment in the MS2 model, it is worth noting that this approach is 

substantially different than previous efforts to reverse MS2 compression effects.  Others have 

sought to reverse compression by adjusting the data with learned factors6–8.  In general, these 

approaches eliminate compression while sacrificing precision by multiplying the data with a 

learned quantity.  Our approach, while indirectly related to compression, does neither.  Using a 

peptide-level covariate is a fundamentally different approach.  It is more general, as peptide-level 

covariates do not necessarily relate to compression (any observed peptide level quantity that we 

expect to affect ratios could be added to our model). Even when the covariate used clearly relates 

to compression, as was the case with SSN, adjusting for the observed relationship only slightly 

mitigated the compression phenomenon.   

But perhaps the most important difference is that using a covariate does not require altering the 

underlying data.  Instead we redefine our target parameter based on the observed surrogate 
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measure and estimate it accordingly.  Consequently, a covariate adjustment does not cause the 

dramatic losses to precision that occur when multiplying data by a compression factor.     

The compositional MS3 model is similar only we do not make an adjustment based on summed-signal-

to-noise since MS3 experiments were designed to remove interference experimentally and we do not 

expect the same sort of relationships to hold.  The use of SSN provided a noticeable improvement to 

MS2 estimation accuracy and finding similar quantities that might improve MS3 estimation is 

certainly a valuable goal of future research.  However, appropriate statistics have not yet been studied 

and the model definition used for MS3 throughout this paper is as follows:  


���	|	���, ���
� 	~	�����, ���

�" 

���	~	�(0, 10) 

���
� 	|	- ∼ 	.&/0*1023++3(1, -) 

- ∼ 435(�)*+35(0, 5) 

Where ��� now represents the expected log ratio for the '’th protein between the 9’th condition and the 

reference condition.  

In both models partially pooled variance estimation is accomplished by sampling variance 

components, ���
� , from a distribution of variances where the shape of the distribution is 

determined by the hierarchical parameter -.  Once again the hyperparameters were selected to be 

weakly informative.  However, the choice of the half-normal and inverse gamma distributions 

was made for convergence considerations which are detailed below.   It should be noted that this 



S-10 

 

is likely the modeling decision most responsible for the dramatic improvements seen in signal 

detection.  Notice that the accuracy between compositional MS3 and old MS3 models remains 

unchanged, while the ROC plots show a dramatic jump in performance.  With the point estimates 

unchanged, it stands to reason that the driver of the improvement is the error estimation.   

This model provides inference regarding what was seen in the samples being studied.  Conclusions drawn 

from this model should be confined to statements about what was in the samples studied and would not 

be appropriate for population level inference.  While the model can easily be adapted for population level 

studies, we have not done so here, as the motivating examples were not designed for population level 

inference. 

Bayesian models provide great flexibility in how we predict signal detection as we can directly compute 

the posterior probability that a parameter lies in a specified interval.  For example, a researcher could 

compute the probability that a protein fold-change was greater than 2.  However, in our dilution 

experiments we do not wish to give our methodology an unfair advantage by using the true ratios as part 

of our decision rule.  Consequently, we instead ranked the proteins by the posterior mean divided by the 

posterior coefficient of variation.  This statistic ranks proteins by the magnitude of the posterior mean but 

diminishes or strengthens the evidence based on the CV. This was used as the predictive statistic in ROC 

plots throughout the paper. 

Credible intervals are a feature of Bayesian modelling.  They can be thought of as analogous to 

confidence intervals, however they differ in a few important aspects.  In a Bayesian model we 

have the ability to directly asses the probability, conditional on the observed data, that a model 

parameter (protein fold-change) lies in a particular interval.  Confidence intervals lack this clear 

probabilistic interpretation.  This is advantageous as we can ask questions with a Bayesian model 
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that are simply not possible in a frequentist framework.  For example, if we wanted to know the 

probability that a protein fold-change was very small (between -.1 and .1) we could do so 

directly.  This is profoundly different than looking for large p-values which in no way suggests 

evidence in favor of a null hypothesis.   

The compositional transformation, peptide level covariate adjustments, and partially pooled 

variance estimation are all implemented in our publicly available R package which contains pre-

compiled Stan models to make use of efficient Bayesian simulation algorithms9.  

Assessing Model Convergence 

Bayesian modeling typically depends on simulations to characterize posterior distributions.  The 

Stan programming language makes use of Hamiltonian Monte Carlo techniques to efficiently 

explore posterior distributions.  However, whenever estimation is performed with non-

deterministic methods concerns about model convergence need to be considered.  This concern is 

especially relevant for models as large and complex as the ones proposed in this paper.   

Distributional assumptions and parametrizations all play a role in obtaining convergence.  In 

particular the hierarchical variance components require the non-centered reparameterization 

described in the Stan case studies (http://mc-stan.org/users/documentation/case-

studies/divergences_and_bias.html).  Furthermore, we found that many distributional 

assumptions resulted in computational difficulties.  Consequently, the distributions described in 

this paper, and implemented in our package were often selected out of computational necessity.  

Stan offers a number of tools to assess model convergence.  By default, in Stan and our compMS 

package, every sampling chain is independently run four times from varying sets of initial 

conditions.  This means that we can observe trace plots of each parameter to visually inspect 
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whether the parameters converged, and whether not each different starting points still converged 

to the same place.  As an example, a trace plot for � from the MS2 model is shown in Figure S1, 

A.   

Our proteomics models contain thousands of parameters and examining every trace plot is not 

realistic.  Fortunately, there are some options for systematically assessing convergence 

properties.  One way is to compare the variance between and within each of the independent 

chains.  This is done with the <= statistic10 which should be close to 1 if the model has converged.  

A histogram of all the <= statistics can be generated by calling the stan_rhat() function on any 

stan model fit object (Figure S1, B).  For reference, Stan best practices suggest that Rhat should 

be less than 1.1 (https://github.com/stan-dev/stan/wiki/Stan-Best-Practices).  

Another way to assess overall performance is to inspect the distributions of the parameters of 

interest.  The compMS function caterpillar() creates a plot of the credible intervals of protein fold 

changes (Figure S1, C).  If the model did not converge at all we might expect to see unusually 

large distributions for every parameter.  Notice that the variability of protein estimates truly 

spans an order of magnitude when the parameters have converged.  Consequently, if all of the 

credible intervals are similar and large, it would be highly suggestive that the model did not 

converge. 
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Figure S1.  Assessing the convergence of a Stan model.  A)  A trace plot for the parameter � from the 
MS2 model in the Boundary Case experiment.  This plot shows connects the points from each sampling 
iteration for the parameter.  Each of the independent chains is plotted in a different color.  The first 
thousand iterations are shown with a grey background because they were defined as part of the warmup 
period and are not used for inference.  B)  Histogram of the Rhat statistic.  This shows the relative 
frequency of Rhat for all parameters in the MS2 Boundary Case experiment.  C)  Caterpillar plot for log2 
protein fold-changes in the MS2 Boundary Case experiment.  This plot is rank ordered by the posterior 
mean.  Red intervals represent 80% credible intervals and the black tails represent 95% credible intervals.  
Only 95% credible intervals that do not contain zero are shown here. 
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Boundary Case Experiment 

Mouse whole brain tissue lysate and yeast whole cell lysate was prepared as described previously 11,12. 

Protein digestion and TMT labeling was performed as described previously13. After labeling, we 

diluted the yeast samples at ratios of 1,1, 1.25, 1.5, 1.75, 2, 4, 8, 16 and 32.  The dilutions were done in 

both directions (diluting from the 32, and diluting from the 1).  We then repeated this setup with ratios of 

1, 1, 2, 4, 0, 0, 0, 0, 32, and 100.  The mouse peptide background was constant across channels, so that it 

is 1:1 at the highest level of yeast peptide.  Approximately 1 µg of unfractionated sample was analyzed by 

mass spectrometry.  

Samples were analyzed on an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA) coupled to a Proxeon EASY-nLC 1200 liquid chromatography (LC) 

pump (Thermo Fisher Scientific). Peptides were separated on a 100 µm inner diameter 

microcapillary column packed with 35 cm of Accucore C18 resin (2.6 µm, 150 Å, 

ThermoFisher). Peptides were separated using 60 min gradient of 3 to 25% acetonitrile in 

0.125% formic acid with a flow rate of 450 nL/min.  

Each analysis used an MS3-based TMT method3,14, which has been shown to reduce ion 

interference compared to MS2 quantification15. The scan sequence began with an MS1 spectrum 

(Orbitrap analysis, resolution 120,000, 400−1400 Th, automatic gain control (AGC) target 2E5, 

maximum injection time 100 ms). The top ten precursors were then selected for MS2/MS3 

analysis. MS2 analysis consisted of: collision-induced dissociation (CID), quadrupole ion trap 

analysis, automatic gain control (AGC) 4E4, NCE (normalized collision energy) 35, q-value 

0.25, maximum injection time 150 ms), and isolation window at 0.7. Following acquisition of 

each MS2 spectrum, we collected an MS3 spectrum in which multiple MS2 fragment ions are 
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captured in the MS3 precursor population using isolation waveforms with multiple frequency 

notches [22]. MS3 precursors were fragmented by HCD and analyzed using the Orbitrap (NCE 

55, AGC 2.5E5, maximum injection time 150 ms, resolution was 50,000 at 400 Th). For MS3 

analysis, we set the isolation window to 1.2 Th. 

For MS2-only analysis, scan sequence began with an MS1 spectrum (Orbitrap analysis, 

resolution 120,000, 400−1400 Th, automatic gain control (AGC) target 1E6, maximum injection 

time 100 ms). The top ten precursors were then selected for MS2 analysis. MS2 analysis 

consisted of: high energy collision-induced dissociation (HCD), quadrupole ion trap analysis, 

automatic gain control (AGC) 1E5, NCE (normalized collision energy) 37, maximum injection 

time 150 ms), and isolation window at 0.7.  

Mass spectra were processed using a Sequest-based in-house software pipeline16. Database 

searching included all entries from the species-appropriate database (mouse database 

downloaded from UniProt on July 2, 2014 and yeast database downloaded from The 

Saccharomyces Genome Database (SGD) on March 24, 2014. The database was concatenated 

with one composed of all protein sequences in the reversed order. Searches were performed 

using a 50 ppm precursor ion tolerance for total protein level analysis. The product ion tolerance 

was set to 0.9 Da. These wide mass tolerance windows were chosen to maximize sensitivity in 

conjunction with Sequest searches and linear discriminant analysis16,17. TMT tags on lysine 

residues and peptide N termini (+229.163 Da) and carbamidomethylation of cysteine residues 

(+57.021 Da) were set as static modifications, while oxidation of methionine residues (+15.995 

Da) was set as a variable modification.  
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Peptide-spectrum matches (PSMs) were adjusted to a 1% false discovery rate (FDR)18,19.  PSM 

filtering was performed using a linear discriminant analysis, as described previously16, while 

considering the following parameters: XCorr, ∆Cn, missed cleavages, peptide length, charge 

state, and precursor mass accuracy. For TMT-based reporter ion quantitation, we extracted the 

signal-to-noise (S:N) ratio for each TMT channel and found the closest matching centroid to the 

expected mass of the TMT reporter ion. For protein-level comparisons, PSMs were identified, 

quantified, and collapsed to a 1% peptide false discovery rate (FDR) and then collapsed further 

to a final protein-level FDR of 1%. Moreover, protein assembly was guided by principles of 

parsimony to produce the smallest set of proteins necessary to account for all observed peptides. 

Channels were randomly permuted within each protein to expand the full range of possible outcomes 

then peptide level two-way ANOVA’s similar to those used by Oberg et. al.20 were used to estimate log2 

protein level fold-changes for both the MS2 and MS3 data.  Note that the more common approach of 

discarding peptide level variation and performing a t-test on protein level estimates is not an option here 

as the experiment had no replicates.  For each protein, the following model was fit in R with the lm 

function. 


�� = > + �� + ?� + @�� 

Where 
�� is the log2 signal-to-noise ratio where 9 = 1,…	, &: 	indexes the number of conditions.  

; = 1,… , A indexes the A peptides observed within the protein.  Reference cell coding is used so that 

�� = 0, ?� = 0. > represents the expected value of peptide 1 in condition 1.  ��, for 9 ≠ 1,  represents 

the expected log2 contrast for the protein between condition 9 and condition 1.  ?�, for ; ≠ 1, represents 

the average effect difference between peptide k and peptide 1. 
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For proteins with only a single observed peptide, the model is reduced to a one-way anova without a 

peptide effect.    

P-values for the hypothesis that each fold change is zero, were taken directly from the model objects.  The 

purpose of our hypothesis testing was to use the p-values to generate ROC plots.  Since these plots 

depend only on the rank order of the p-values, and multiple hypothesis test corrections do not change the 

rank ordering, we did not perform any corrections.  

ROC plots were generated with the ROCR package in R21.  True positives are defined as yeast proteins 

that are known to change by given amount, and false positives are the yeast proteins known to not change. 

Both of the compositional models were coded in the Stan programming language and are 

provided in our R package.  To simplify the computational complexity each dataset analyzed was 

split up into randomly selected sets of 1000 proteins.  This provides a substantial reduction in 

processing time. 

Note that the point estimates from this model are very similar to the difference in the average log2 

intensities between the conditions.  This is true for any model that shares the mean structure of the 

described ANOVA, including the mixed model, and the GLM discussed in a recent review paper22.  This 

also holds for the compositional model when no covariate adjustments are made, which explains why the 

MS3 accuracy was the same between the ANOVA model and the Compositional model in the Boundary 

Case Experiment.  The Compositional MS3 Model gave virtually identical point estimates to the 

ANOVA model but provided improved error estimation which led to a dramatic improvement in signal 

detection.  

Raw files have been uploaded to ProteomeXchange (Accession Number – PXD008259).  
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Common Case Experiment 

Yeast cells were diluted to ratios of 1:2:3, with human cell lines added to compensate for lost material.   

Cell lysis and protein digestion. Yeast cultures  were harvested by centrifugation, and 

resuspended in lysis buffer - 50 mM HEPES pH 8.5, 8 M urea, 75 mM NaCl, protease (complete 

mini, EDTA-free) inhibitors (Roche, Basel, Switzerland) at 4°C. Yeast cells were lysed using the 

MiniBeadbeater (Biospec, Bartlesville, OK) in microcentrifuge tubes with 1ml zirconium oxide 

beads at maximum speed for five cycles of 30 sec each, with 1 min pauses between cycles to 

minimize heating the lysates. Human cells (SHSY-5Y cell line) were harvested, resuspended in 

lysis buffer, and lysed by 20 pumps through a a 21-gauge needle. After centrifugation, lysates 

were transferred to new tubes, spun to pellet cell debris, and the supernatants saved. We 

determined the protein concentration in the lysate using the bicinchoninic acid (BCA) protein 

assay (Thermo Fisher Scientific, Waltham, MA). 

 

Proteins disulfide bonds were reduced with 5 mM tris (2-carboxyethyl) phosphine (TCEP), 

(room temperature, 25 min) and alkylated with 10 mM iodoacetamide (room temperature, 30 

min in the dark). Excess iodoacetamide was quenched with 15 mM dithiotreitol (room 

temperature, 15 min in the dark). Methanol-chloroform precipitation was performed prior to 

protease digestion. In brief, four parts neat methanol was added to each sample and vortexed, one 

part chloroform was added to the sample and vortexed, and three parts water was added to the 

sample and vortexed. The sample was centrifuged at 4000 RPM for 15 min at room temperature 

and subsequently washed twice with 100% methanol, prior to air-drying. Samples were 

resuspended in 50 mM HEPES pH 8.5 and digested at room temperature for 12 hrs with LysC 
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protease at a 100:1 protein-to-protease ratio. Trypsin was then added at a 100:1 protein-to-

protease ratio and the reaction was incubated 6 hrs at 37°C. Peptide concentrations in the digests 

were measured using the Quantitative Colorometric Peptide assay kit (Pierce). Peptides from a 

Lyc/trypsin digest from human or yeast lysates were mixed to create the ratios shown in Figure 1 

in at least triplicate (n=3,4,4) 

TMT pipeline.  The eleven TMT-labeled samples were mixed into a single sample and 

separated by basic pH RP HPLC We used an Agilent 1100 pump equipped with a degasser and a 

photodiode array (PDA) detector (set at 220 and 280 nm wavelength) from Thermo Fisher 

Scientific (Waltham, MA). Peptides were subjected to a 50 min linear gradient from 5% to 35% 

acetonitrile in 10mM ammonium bicarbonate pH 8 at a flow rate of 0.6 mL/min over an Agilent 

300Extend C18 column (3.5 µm particles, 4.6 mm ID and 220 mm in length). The peptide 

mixture was fractionated into a total of 96 fractions which were consolidated into 24 fractions. 

Samples were subsequently acidified with 1% formic acid and vacuum centrifuged to near 

dryness. Each eluted fraction was desalted via StageTip , dried via vacuum centrifugation, and 

reconstituted in 5% acetonitrile, 5% formic acid for LC-MS/MS processing.  

 

For MS3 analysis, eleven pooled fractions were analyzed using 3-hr gradient separations using 

the instrument parameters described above for the boundary case experiment, injecting roughly 1 

ug per fraction for 11 pooled fractions on a Samples were analyzed on an Orbitrap Fusion Lumos 

mass spectrometer (Thermo Fisher Scientific, San Jose, CA) coupled to a Proxeon EASY-nLC 

1200 liquid chromatography (LC) pump (Thermo Fisher Scientific).  
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For the MS2 analysis, the same 11 samples were analyzed on the same Orbitrap Fusion Lumos mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA) coupled to a Proxeon EASY-nLC 1200 liquid 

chromatography (LC) pump (Thermo Fisher Scientific). Instrument parameters were preserved for MS1 

analysis, but for MS2 precursors were fragmented by HCD and analyzed using the Orbitrap (NCE 55, 

AGC 2.5E5, maximum injection time 150 ms, resolution was 50,000 at 400 Th). For MS2 analysis, we 

set the isolation window to 1.4 Th. 

The data generated in this experiment is offered available with the manuscript titled “Proteome-

Wide Evaluation of Two Common Protein Quantification Methods” which is currently under 

review.  

 

Data analysis. Samples were searched with the Sequest algorithm against a combined yeast 

(downloaded from SGD on March 24, 2014) and human database (downloaded from UniProt on 

February 4, 2014) which was concatenated with their reversed sequences as decoys for FDR 

determination.  Results were filtered to a 1% FDR at the peptide and protein levels using linear 

discriminant analysis and the target-decoy strategy.  MS3 spectra were processed as signal-to-

noise ratios for each reporter ion based on noise levels within a 25 Th window. Proteins were 

quantified by summing reporter ion intensities across all matching PSMs using in-house 

software, as described previously. PSMs with low isolation specificity (<0.7), MS3 spectra with 

more than eight TMT reporter ion channels missing, MS3 spectra with TMT reporter summed 

signal to noise ratio that is less than 200, or no MS3 spectra were excluded from quantitation.  

Equal human protein starting amounts was enforced by normalizing to the sum of all human 

peptides for each of the 11 channels.  The normalization is slightly different for the 

compositional modelling.  Instead using a multiplicative factor to equalize protein level 
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intensities, additive factors are used to ensure that the average PSM log ratio to the reference 

channel are equivalent for all channels. 

 

In this experiment with multiple replicates, t-tests were possible so we chose to analyze the data in 

accordance with the most commonly used method.  Protein estimates were obtained from the standard in 

house software and t-tests were performed for hypothesis testing.  

The compositional modelling was identical to the procedures described for the Boundary Case 

Experiment. 

Once again, ROC plots were generated with ROCR21.  True positives are defined as the yeast 

proteins that are known to change by a certain amount (2- or 3-fold).  False positives are defined 

by the unchanging human proteins.   

 

Dual multiplexed viral infection experiment with infinite changes 

Samples analyzed for the Human Cytomegalovirus Time Course Experiment were prepared as described 

previously23 .  Two TMT experiments were designed as follows: 1) a TMT10-plex in the following order 

from 126-131: mock infection 1, mock infection 2, 6h post-infection, 12 h post-infection, 12 h post-

infection (irradiated), 18h  post-infection, 24h  post-infection, 48h  post-infection, 72h  post-infection, and 

96h  post-infection and 2) a TMT2-plex with mock 1 (126) and 48h  post-infection (130N). For both 

TMT experiments, the TMT-labeled peptides were pooled at a 1:1 ratio across all samples prior 

to off-line basic pH reversed-phase (BPRP) fractionation. The combined sample was vacuum 

centrifuged to near dryness and subjected to C18 solid-phase extraction (SPE) via Sep-Pak 
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(Waters, Milford, MA). We fractionated the pooled TMT-labeled peptide sample using the 

Pierce High pH Reversed-Phase Peptide Fractionation Kit (cat. # 84868). Eight fractions were 

collected using: 12.5%, 15%, 17.5%, 20%, 22.5%, 25% and 50% acetonitrile. Samples were 

subsequently acidified with 1% formic acid and vacuum centrifuged to near dryness. Each 

fraction was desalted via StageTip24, dried again via vacuum centrifugation, and reconstituted in 

5% acetonitrile, 5% formic acid for LC-MS/MS processing. Samples were analyzed on an 

Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA) coupled to a 

Proxeon EASY-nLC 1200 liquid chromatography (LC) pump (Thermo Fisher Scientific) in a 

manner like that described above. However, here peptides were separated over a 150 min 

gradient.  Data was analyzed with the same two-way ANOVA and compositional MS3 models 

described above.  

 

Raw files have been uploaded to ProteomeXchange (Accession Number – PXD008259).  
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Notes on Software 

An R package, compMS, that fits pre-compiled Stan models for compositional proteomics can be 

installed from www.github.com/ColtoCaro/compMS  

The RStan package should be installed prior to installation of compMS.  Special instructions for 

windows users are available at https://github.com/stan-dev/rstan/wiki/Installing-RStan-on-

Windows  

The compMS package is designed to make fairly complicated Bayesian statistical models 

accessible to non-experts.  Accordingly, most decisions about the modeling are made by altering 

a header file of a spreadsheet.  For details on the features of the package and how to use them, 

please refer to the readme file on the github page as this will be updated along with new versions 

of the package. 
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Figure S2.  MS3 methods provide enhanced signal detection for small changes 

ROC plots from the Boundary Case Experiment for small fold-changes of 1.25 (A), 1.5 (B) and 1.75 (C).  

The plots on the left do not include proteins for which only a single peptide was quantified, since the 

ANOVA methodology used cannot provide p-values in these cases.  On the right we include all proteins 

quantified by assigning a value of 1 to all of the missing p-values.  These plots show that in this range of 

changes, MS3 signals are easier to detect than MS2.  We also see that methodology plays a very large 

role in our ability to pick out these small signals, with the compositional modelling providing substantial 

gains in all cases.  Finally, it is worth noting that including proteins with only a single measurement hurts 

the performance of MS3 methods more than MS2.  This is because the MS3 data contains, as a 

percentage, far more proteins with only one observation.    
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Figure S3.  Methodological advantages diminish as the true fold-changes increase 

ROC plots from the Boundary Case Experiment for fold-changes of 4 (A), 8 (B) and 16 (C).  The plots on 

the left do not include proteins for which only a single peptide was quantified, since the ANOVA 

methodology used cannot provide p-values in these cases.  On the right we include all proteins 

quantified by assigning a value of 1 to all of the missing p-values.  These plots show that in this range of 

changes, the gains of compositional modelling are still substantial.  However, the improved signal 

detection of MS3 over MS2 begins to disappear.  In fact, when including proteins with only a single 

observation, the MS2 methods begin to outperform MS3 for fold-changes of 8 and 16.  MS2 methods 

provide more data for each protein but with less accuracy.  Presumably, the shift in performance occurs 

because large enough changes do not require great accuracy to reject a hypothesis test that the change 

was zero.   
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Figure S4.  Methodological advantages diminish for large, but not infinite, fold changes 

A-B)  ROC plots from the Boundary Case Experiment for fold-changes of 32 (A) and 100 (B).  The plots on 

the left do not include proteins for which only a single peptide was quantified, since the ANOVA 

methodology used cannot provide p-values in these cases.  On the right we include all proteins 

quantified by assigning a value of 1 to all of the missing p-values.  These plots show that in this range of 

changes, there are still some gains due to compositional modelling however and MS2 continues to 

outperform MS3 however, all of the advantages continue to shrink as all methods do a good job of 

detecting large changes.  That said, many of the single observation proteins in this category are real 

changes and the ANOVA methodology cannot detect them, providing a substantial hit, especially for 

MS3.   

C)  ROC plot for 2-fold changes from the Boundary Case Experiment.  This is the plot corresponding to 

one presented in Figure 2.  The difference is that here we include all quantified proteins, even those 

with only one observation.  The consequence is that the methodological gains from compositional 

modelling grow more substantial. 

D)  ROC plot for Infinite fold-changes from the Boundary Case Experiment.  This is the plot 

corresponding to one presented in Figure 3A.  The difference is that here we include all quantified 

proteins, even those with only one observation.  The gains from compositional modelling are substantial 

in this category.  The reason for this is that many of the infinite changes appear relatively small.  

Consequently, the detection performance parallels the patterns seen with smaller changes.  Modelling 

provides enormous gains, and the improved accuracy for MS3 once again takes on more importance 

than the added number of observations from MS2 (of course we are not here considering the total 

number of observations, only the sensitivity and specificity of detecting a single signal).    
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Figure S5.  Further analyses confirm performance patterns 

A)  ROC plot from the Common Case Experiment for 3-fold changes.  This plot reinforces the rank order 

of performance seen for 2-fold changes.  The lesson regarding absolute numbers of true positives also 

remains similar.  At a one-percent false positive rate MS2 and MS3 technologies with t-tests gave us 

1412 and 1155 true 3-fold changes.  Using compositional modelling these numbers increased to 1779 

and 1306 respectively.   

B)  ROC plot showing the ability to detect infinite viral protein fold-changes from a background of mostly 

unchanged human proteins.  This is the plot corresponding to one presented in Figure 3E.  The 

difference is that here we include all quantified proteins, even those with only one observation.  The 

consequence is that the methodological gains from compositional modelling grow more substantial.  As 

expected, the ROC curves for compositional modeling in both the 2- and 10-plex have dropped 

(categorizing single observations is a more difficult problem).  However, many of these prove to be true 

positives resulting in a greater divergence between methodologies when considering all observed 

proteins.   
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